本篇文章给大家谈谈麦克劳林,以及麦克劳林公式展开对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、7个常用麦克劳林公式是什么?...
本篇文章给大家谈谈麦克劳林,以及麦克劳林公式展开对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
7个常用麦克劳林公式是:
1、sinx=x-x^3/3!+x^5/5!-…+(-1)^nx^(2n+1)/(2n+1)!+0^(x^(2n+2))
2、cosx=1-x^2/2!+x^4/4!-x^6/6!+…+(-1)^nx^2n/(2n)!+0^(x^2n)
3、ln(1+x)=x-x^2/2+x^3/3-…+(-1)^nx^(n+1)/(n+1)+0(x^(n+1))
4、1/(1-x)=1+x+x^2+…+x^n+0(x^n)
5、(1+x)^m=1+mx+m(m-1)/2!x^2+…+m(m-1)…(m-n-+1)x^n/n!+0(x^n)
6、e^x=1+x+x^2/2!+…x^n/n!+e^θx·x^(n+1)/(n+1)!
7、1/(1+x)=1+x+x^2+x^3+…+x^n(x∈(-1,1))
麦克劳林简介
在麦克劳林公式中,误差|R𝗻(x)|是当x→0时比xⁿ高阶的无穷小。
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和。他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以被称为Cramer法则。
麦克劳林公式展开是f(x)=sinx。
麦克劳林公式是泰勒公式的一种特殊形式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
泰勒公式的意义是把复杂的函数简单化,也即是化成多项式函数,泰勒公式是在任何点的展开形式。麦克劳林公式的意义是在0点,对函数进行泰勒展开。
常用麦克劳林公式展开:
f(x)=f(x0)+f’
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn。
其中Rn是公式的余项,可以是如下:
1.佩亚诺(Peano)余项:
Rn(x) = o(x^n)。
2.尔希-罗什(Schlomilch-Roche)余项:
Rn(x) = f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)。
[f(n+1)是f的n+1阶导数,θ∈(0,1)]。
常用于求极限的麦克劳林公式如下图:
这类公式不需要特意去背诵,它很长,也很容易记混。最好的办法就是自己尝试推导。泰勒级数(Taylor's series)的特殊情况,即当a=0时,f(x)的展开式。
麦克劳林公式记忆技巧:
根据观察展开式,我们不难发现第一项为f(x)的原式在x=a时的值;第二项是f(x)的一阶导在x=a时的值,第三项是f(x)的二阶导在x=a时的值。就能发现这个跟一般式中出现的一样!第一项的n为0,原式的零次导,即为原式;第二项的n为1,原式的一次导以此类推。
麦克劳林的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于麦克劳林公式展开、麦克劳林的信息别忘了在本站进行查找喔。
上一篇:足球分析论坛(足球分析网)
下一篇:马宁儿(马宁)
发表评论